Preparing for a Data Scientist Role

Preparing for a Data Scientist Role

2024, Nov 15    

In my preparation for this exciting opportunity as a Data Scientist , I am focusing on mastering the following skills. This article documents my approach to each skill, detailing technical implementations and practical applications.


1. Pandas for Data Processing

Key Tasks:

  • Handling Missing Data:
    • Replace missing values with the mean/median:
      df['column_name'].fillna(df['column_name'].mean(), inplace=True)
      
    • Drop rows with missing data:
      df.dropna(subset=['column_name'], inplace=True)
      
    • Forward-fill missing data:
      df.fillna(method='ffill', inplace=True)
      
  • Data Transformation:
    • Normalize or scale columns:
      from sklearn.preprocessing import MinMaxScaler
      scaler = MinMaxScaler()
      df['scaled_column'] = scaler.fit_transform(df[['column_name']])
      
  • Removing Duplicates:
      df.drop_duplicates(inplace=True)
    
  • Group and Aggregate:
      grouped = df.groupby('category_column')['numeric_column'].sum()
    

2. Manage Data Transfer Between Different Platforms Using Data Transfer Packages (e.g., FTP)

Key Tools:

  • Using Python’s ftplib for FTP Transfers:
    • Upload a File:
      from ftplib import FTP
          
      ftp = FTP('ftp.server.com')
      ftp.login(user='username', passwd='password')
      with open('file_to_upload.csv', 'rb') as f:
          ftp.storbinary('STOR file_to_upload.csv', f)
      ftp.quit()
      
    • Download a File:
      ftp = FTP('ftp.server.com')
      ftp.login(user='username', passwd='password')
      with open('downloaded_file.csv', 'wb') as f:
          ftp.retrbinary('RETR remote_file.csv', f.write)
      ftp.quit()
      
  • Data Transfer with SFTP (Using pysftp):
      import pysftp
        
      with pysftp.Connection('hostname', username='user', password='pass') as sftp:
          sftp.put('local_file.csv', 'remote_file.csv')
          sftp.get('remote_file.csv', 'local_file.csv')
    

3. Data Integrity

Ensuring Data Integrity:

  • Verify Data Completeness:
      assert df.isnull().sum().sum() == 0, "Data contains missing values!"
    
  • Check Duplicates:
      assert df.duplicated().sum() == 0, "Data contains duplicates!"
    
  • Validate Data Types:
      assert df['date_column'].dtype == 'datetime64[ns]', "Date column is not in the correct format!"
    
  • Use Hashing for Validation:
      import hashlib
        
      def hash_file(file_path):
          with open(file_path, 'rb') as f:
              return hashlib.sha256(f.read()).hexdigest()
        
      assert hash_file('file.csv') == 'expected_hash_value', "File integrity compromised!"
    

4. Relational Data Warehouses

Working with SQL:

  • Creating a Task:
      CREATE TASK daily_update
      SCHEDULE 'USING CRON 0 0 * * * UTC'
      AS
      SELECT * FROM source_table INTO target_table;
    
  • Creating Views:
      CREATE VIEW sales_summary AS
      SELECT category, SUM(revenue) AS total_revenue
      FROM sales_data
      GROUP BY category;
    
  • Writing Complex Queries:
      SELECT customer_id, AVG(purchase_amount) AS avg_purchase
      FROM purchases
      WHERE purchase_date >= '2023-01-01'
      GROUP BY customer_id
      HAVING avg_purchase > 100;
    

5. Machine Learning (Regression, Classification, Clustering)

Regression (Linear Regression):

  • Implementation:
      from sklearn.linear_model import LinearRegression
      model = LinearRegression()
      model.fit(X_train, y_train)
      predictions = model.predict(X_test)
    
  • Metrics:
      from sklearn.metrics import mean_squared_error
      print(mean_squared_error(y_test, predictions))
    

Classification (Logistic Regression):

  • Implementation:
      from sklearn.linear_model import LogisticRegression
      clf = LogisticRegression()
      clf.fit(X_train, y_train)
      predictions = clf.predict(X_test)
    
  • Metrics:
      from sklearn.metrics import classification_report
      print(classification_report(y_test, predictions))
    

Clustering (K-Means):

  • Implementation:
      from sklearn.cluster import KMeans
      kmeans = KMeans(n_clusters=3)
      kmeans.fit(data)
      print(kmeans.labels_)
    
  • Visualization:
      import matplotlib.pyplot as plt
      plt.scatter(data[:, 0], data[:, 1], c=kmeans.labels_)
      plt.show()
    

Conclusion

By deeply understanding and practicing these topics, I am equipping myself with the technical knowledge and practical skills required for this role. This preparation ensures I can confidently handle the challenges and responsibilities outlined in the job description.